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Abstract

This paper studies the problem of H 2 control for a class of discrete time-delay systems with D-stability constraints. The corresponding
sufficient conditions are given in terms of linear matrix inequalities. In particular, the conditions are delay-dependent, and so they are less
conservative. The obtained controller can provide an upper bound for the H 2 cost function. A numerical example is given to illustrate the
proposed method.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

The problem of H 2 control for systems with D-stability
constraints has attracted much attention [1–5]. For conve-
nience of computation, the linear matrix inequality (LMI)
method is then applied to solve this problem. For example,
by enforcing a common matrix constraint, the H 2=D-stable
controller is designed [6,7]. Then, the results are developed
in Refs. [8–10] with a parameter-dependent Lyapunov
function. However, in the above-mentioned references,
time-delay is not considered, while it is a source of instabil-
ity in many cases. Therefore, the stability and performance
analysis of time-delay systems is of theoretical and practi-
cal importance [11–13]. Furthermore, existing criteria for
asymptotic stability of time-delay systems can be classified
into two types: delay-independent stability and delay-
dependent stability. And it is known that the latter is gen-
erally less conservative than the former especially when the

size of the delay is small. In Ref. [14], the H 2=D-stability
controller synthesis problem is investigated for discrete
time-delay systems, however, the H 2 control conditions
are delay-independent.

In this paper, we obtain a delay-dependent solution to
H 2 control problem for discrete systems with state delay
and D-stability constraints. New H 2 performance specifica-
tion with D-stability constraints is derived in terms of lin-
ear matrix inequalities (LMIs) that provide an upper
bound for the H 2 cost function. And then, by minimizing
this upper bound we derive the corresponding state-feed-
back controller.

2. Problem formulation and preliminaries

Consider the following discrete time-delay system:

xðk þ 1Þ ¼ AxðkÞ þ Adxðk � dÞ þ BuðkÞ þ B1wðkÞ
zðkÞ ¼ CxðkÞ þDuðkÞ
xðkÞ ¼ /ðkÞ; k 2 ½�d; 0�

ð1Þ
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where xðkÞ 2 Rn is the state variable, uðkÞ 2 Rm is the con-
trol input, zðkÞ 2 Rp is the exogenous output, wðkÞ 2 Rq is
the disturbance, d is a positive integer for delay time, /ðkÞ
is an initial value at k, and A, Ad, B, B1, C, D are constant
matrices of appropriate dimensions. Assume xðkÞ is mea-
surable and consider the state-feedback uðkÞ ¼ KxðkÞ.
Then the closed-loop system can be written as:

xðk þ 1Þ ¼ AclxðkÞ þ Adxðk � dÞ þ B1wðkÞ
zðkÞ ¼ C clxðkÞ

ð2Þ

where

Acl ¼ Aþ BK ;C cl ¼ C þDK ð3Þ
Also, we introduce H 2 performance measure as follows:

JH2
¼
X

1

k¼0

zTðkÞzðkÞ ð4Þ

Our goal is to look for the feedback gain K such that the
system (2) is asymptotically stable with D-stability con-
straints and the H 2 norm of the closed-loop transfer func-
tion TzwðsÞ from disturbance w to exogenous output z is
minimized.

In what follows, for convenience, we use symbol D(0, 1)
to denote a unit circular region, symbol Dða; rÞ a circular
region with the center ð0; aÞ and the radius r, where
j a j< r < 1, symbol � the submatrix that lies below the
diagonal.

Definition 1. System (1) is said to be D-stable if all
eigenvalues of system matrix A lie in the region Dða; rÞ.
Similarly, system (1) is called D-stabilizable if there exists a
state-feedback uðkÞ ¼ KxðkÞ, such that the closed-loop
system (2) is D-stable.

Lemma 1. Given any real matrices G1, G2 of appropriate

dimensions and a symmetric and positive-definite matrix

G3. Then, the following inequality holds:

GT
1 G2 þ GT

2 G1 6 GT
1 G3G1 þ GT

2 G�1
3 G2

Lemma 2. [15] Assume that a 2 Rna , b 2 Rnb and

N 2 Rna�nb . Then for any matrices X 2 Rna�na , Y 2 Rna�nb

and Z 2 Rnb�nb , the following inequality holds:

�2aTNb 6
a

b

� �T
X Y �N

� Z

� �

a

b

� �

X Y

� Z

� �

P 0

3. Main results

3.1. D-stability analysis and synthesis

Let uðkÞ ¼ 0;wðkÞ ¼ 0, then the characteristic equation
of system (1) is

wðsÞ ¼ detðzI � A� Adz�dÞ ¼ 0 ð5Þ
Now we state our first result as follows.

Theorem 1. All the characteristic roots of system (1) are

located inside Dða; rÞ for all d 2 ½0; �d�, if there exist an

integer �d > 0, symmetric and positive-definite matrices

X > 0 and S > 0 such that

ð1; 1Þ ðA� aIÞTXAd

� AT
d XAd � S

" #

< 0 ð6Þ

where ð1; 1Þ ¼ ðA� aIÞTXðA� aIÞ � r2X þ ðr� j a j Þ��d
S.

Proof. Suppose there exists a characteristic root z of system
(1) outside Dða; rÞ, then the inequality ð�z� aÞðz� aÞP r2

holds. For any symmetric and positive-definite matrix
X > 0, the inequality ð�z� aÞXðz� aÞP r2X holds.
Suppose v 2 Cn is the characteristic vector satisfying

zv ¼ Avþ Adz�dv ð7Þ
Then multiplying both sides of the inequality by vH and v
gives

vHð�z� aÞXðz� aÞv P r2vHXv ð8Þ
Substituting (7) into (8) and rearranging the terms give

vH½ðAT � aIÞXðA� aIÞ þ ðAT � aIÞXAdz�d

þ AT
d XðA� aIÞ�z�d þ AT

d XAd�z�dz�d � r2X �v P 0 ð9Þ

From Lemma 1, it follows that for any symmetric and po-
sitive-definite matrix S > AT

d XAd, the following inequality
holds

ðAT � aIÞXAdz�d þ AT
d XðA� aIÞ�z�d

6 ðAT � aIÞXAdðS � AT
d XAdÞ�1

AT
d XðA� aIÞ

þ z�d�z�dðS � AT
d XAdÞ

Again from (9), we can obtain

vH½ðAT � aIÞXAdðS � AT
d XAdÞ�1

AT
d XðA� aIÞ

þ ðAT � aIÞXðA� aIÞ þ z�d�z�dS � r2X �v P 0 ð10Þ

Note that z�d�z�d
6 ðr� j a j Þ�d

6 ðr� j a j Þ��d holds when
j a j< r < 1. Then (10) becomes

vH½ðAT � aIÞXAdðS � AT
d XAdÞ�1

AT
d XðA� aIÞ

� r2X:þ ðAT � aIÞXðA� aIÞ þ ðr� j a j Þ��d
S�v P 0

ð11Þ

From Schur complement Lemma, (6) is equivalent to

ðAT � aIÞXAdðS � AT
d XAdÞ�1

AT
d XðA� aIÞ

þ ðAT � aIÞXðA� aIÞ þ ðr� j a j Þ��d
S � r2X < 0

Therefore, for any nonzero vector w, there exist symmetric
and positive-definite matrices X > 0 and S > 0 such that

wH½ðAT � aIÞXAdðS � AT
d XAdÞ�1

AT
d XðA� aIÞ

þ ðAT � aIÞXðA� aIÞ þ ðr� j a j Þ��d
S � r2X �w < 0 ð12Þ
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Obviously, (12) contradicts (11). This completes the
proof. h

Corollary 1. All the characteristic roots of system (1) are

located inside D(0,1) if there exist symmetric and positive-

definite matrices X > 0 and S > 0 such that

ATXA� X þ S ATXAd

� AT
d XAd � S

" #

< 0 ð13Þ

Proof. The result can be obtained by taking a ¼ 0 and
r ¼ 1 in (6).

Since the term ðr� j a j Þd nonlinearly appears in the
LMI conditions and will cause troubles to apply the LMI
toolbox, we have the following improved conclusion. h

Corollary 2. All the characteristic roots of system (1) are

located inside Dða; rÞ for d 2 ½0; �d�, if there exist a positive
scalar k > 1, symmetric and positive-definite matrices

X > 0 and S > 0 such that

ð1; 1Þ ðA� aIÞTXAd

� AT
d XAd � S

" #

< 0 ð14Þ

where

ð1; 1Þ ¼ ðA� aIÞTXðA� aIÞ � r2X þ kS

�d ¼ int � lnðkÞ
lnðr�jajÞ

h i

Proof. Substituting the positive scalar k for ðr� j a j Þ��d in
Theorem 1 gives the conclusion of Corollary 2. h

Remark 1. The result of Corollary 2 is given in terms of
LMIs with constraints, i.e. the generalized characteristic
problem that can be solved by the Gevp solver in the
LMI toolbox. When the minimum value of �k is obtained,
the maximum value of the delay �d can be reached by the
equation k ¼ ðr� j a j Þ��d .

Now we design a state-feedback D-stability controller
that locates all the closed-loop poles of system (2) inside
Dða; rÞ.

Corollary 3. There exists a state-feedback uðkÞ ¼ KxðkÞ
such that all the closed-loop poles of system (2) are located

inside Dða; rÞ for d 2 ½0; �d�, if there exist a positive scalar

k > 1, symmetric and positive-definite matrices

X > 0;S > 0 and matrix Y such that

�r2X þ kS 0 XðA� aIÞ T þ Y TBT

� �S XAT
d

� � �X

2

6

4

3

7

5

< 0 ð15Þ

where �d ¼ int½ �lnðkÞ
lnðr�jajÞ�.

Furthermore, if the above condition holds, a desired state-

feedback gain can be given by K ¼ YX�1.

Proof. From Corollary 2, all the closed-loop poles of sys-
tem (2) are located inside Dða; rÞ for d 2 ½0; �d�, if there exist
a positive scalar k > 1, symmetric and positive-definite
matrices P > 0 and Q > 0 such that

ð1; 1Þ ðAcl � aIÞTPAd

� AT
d PAd �Q

" #

< 0 ð16Þ

where ð1; 1Þ ¼ ðAcl � aIÞTPðAcl � aIÞ � r2P þ kQ. From
Schur complement Lemma, (16) is equivalent to

�r2P þ kQ 0 ðAcl � aIÞTP

� �Q AT
d P

� � �P

2

6

4

3

7

5

< 0 ð17Þ

Pre- and post-multiply (17) by diagfP�1;P�1;P�1g and let
S ¼ P�1QP�1;X ¼ P�1, we can get

�r2X þ kS 0 XðAcl � aIÞT

� �S XAT
d

� � �X

2

6

4

3

7

5

< 0

Substitute Acl ¼ Aþ BK into the above equation and let
Y ¼ KX , then we can obtain (15). This completes the
proof. h

3.2. H 2 synthesis for time-delay systems

In this section, we design an H 2 controller to stabilize
the closed-loop system (2) and minimize the upper bound
of H 2 cost of the system.

Theorem 2. If there exist a positive scalar c > 0, symmetric

and positive-definite matrices X > 0, T1 > 0, T2 > 0 and

matrix T3 such that

W1 0 B1 W2 W2 W3 X

� �T2 0 T2AT
d T2AT

d 0 0

� � �cI BT
1 BT

1 0 0

� � � �X 0 0 0

� � � � �d�1T1 0 0

� � � � � �I 0

� � � � � � �T2

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

< 0 ð18Þ

T3 AdT1

� T1

� �

P 0 ð19Þ

where W1 ¼ SymfðAþ Ad � IÞX þ BYg þ dT3;W2 ¼ XAT

þY TBT � X ;W3 ¼ XCT þ Y TDT, then the control law

uðtÞ ¼ KxðtÞ, where K ¼ YX�1, stabilizes the closed-loop
system (2). Furthermore, the corresponding H 2 cost (4)

satisfies
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JH2
6J�H2

¼ /Tð0ÞP/ð0Þ þ
X

�1

l¼�d

xTðlÞS2xðlÞ

þ
X

0

s¼�dþ1

X

�1

l¼s�1

yTðlÞS1yðlÞ þ cI ð20Þ

where S1 ¼ T�1
1 ;S2 ¼ T�1

2 .

Proof. Let xðk þ 1Þ ¼ xðkÞ þ eðkÞ. Then

xðk þ 1Þ ¼AclxðkÞ þ Adxðk � dÞ þ B1wðkÞ

¼ðAcl þ AdÞxðkÞ � Ad

X

k�1

l¼k�d

eðlÞ þ B1wðkÞ

Consider a Lyapunov–Krasovskii functional candidate
VðkÞ as follows:

VðkÞ ¼ xTðkÞPxðkÞ þ
X

d

l¼1

xTðk � lÞS2xðk � lÞ

þ
X

0

s¼�dþ1

X

k�1

l¼k�1þs

eTðlÞS1eðlÞ

Then the forward difference of VðkÞ along the solution of
system (2) is given by

MVðkÞ¼Vðkþ1Þ�VðkÞ
¼ 2xTðkÞPeðkÞþ eTðkÞðPþdS1ÞeðkÞ

�
X

k�1

l¼k�d

eTðlÞS1eðlÞþx TðkÞS2xðkÞ�xTðk�dÞS2xðk�dÞ

¼ 2xTðkÞPðAclþAd� IÞxðkÞþxTðkÞS2xðkÞþ eTðkÞðPþdS1ÞeðkÞ

�2
X

k�1

l¼k�d

xTðkÞPAdeðlÞþ2xTðkÞPB1wðkÞ�xTðk�dÞS2xðk�dÞ

�
X

k�1

l¼k�d

eTðlÞS1eðlÞ

ð21Þ

By Lemma 2, we can get

� 2
X

k�1

l¼k�d

xTðkÞPAdeðlÞ

6

X

k�1

l¼k�d

xTðkÞ eTðlÞ
� � S3 0

� S1

� �

xðkÞ
eðlÞ

� �

¼ dxTðkÞS3xðkÞ þ
X

k�1

l¼k�d

eTðlÞS1eðlÞ

ð22Þ

where S1;S3 are constant matrices of appropriate dimen-
sions satisfying

S3 PAd

� S1

� �

P 0 ð23Þ

From (21) to (22), we can get

MVðkÞ 6 nTðkÞNnðkÞ � zTðkÞzðkÞ þ cwTðkÞwðkÞ ð24Þ

where

nTðkÞ ¼½ xTðkÞ xTðk � dÞ wTðkÞ �

N ¼
ð1; 1Þ 0 PB1

� �S2 0

� � �cI

2

6

4

3

7

5

þ uTðP þ dS1Þu

u ¼ Acl � I Ad B1½ �
ð1; 1Þ ¼SymfPðAcl þ Ad � IÞg þ dS3 þ S2 þ CT

clC cl

If there exist symmetric and positive-definite matrices
P > 0;S1 > 0;S2 > 0 and matrix S3 such that N < 0, then
we can get

MVðkÞ < �zTðkÞzðkÞ þ cwTðkÞwðkÞ ð25Þ

Obviously, (25) ensures the asymptotical stability of the
closed-loop system (2). Furthermore, summing both sides
of (25) from zero to1 and using the initial conditions yield

X

1

k¼0

zTðkÞzðkÞ 6 /Tð0ÞP/ð0Þ þ
X

�1

l¼�d

xTðlÞS2xðlÞ

þ
X

0

s¼�dþ1

X

�1

l¼s�1

eTðlÞS1eðlÞ þ cI ¼ J�H2
ð26Þ

Thus, if there exist symmetric and positive-definite matrices
P > 0;S1 > 0;S2 > 0 and matrix S3 such that the equation
N < 0 and (23) holds, system (2) is stable and the corre-
sponding H 2 cost (4) satisfies JH2

6 J�H2
. By Schur comple-

ment Lemma, the equation N < 0 is equivalent to the
following equation

ð1; 1Þ 0 PB1 AT
cl � I ð1; 5Þ CT

cl I

� �S2 0 AT
d AT

d 0 0

� � �cI BT
1 BT

1 0 0

� � � �P�1 0 0 0

� � � � ð5; 5Þ 0 0

� � � � � �I 0

� � � � � � �S�1
2

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

< 0

ð27Þ

where ð1; 1Þ ¼ SymfPðAcl þ Ad � IÞg þ dS3; ð1; 5Þ ¼ AT
cl�

I ; ð5; 5Þ ¼ �d�1S�1
1 . Let X ¼ P�1;T1 ¼ S�1

1 ;T2 ¼ S�1
2 ;

T3 ¼ XS3X, make a congruence transformation on (27)
with diagfX ;T2; I ; I ; I ; I ; Ig and make a congruence trans-
formation on (23) with diagfX ;T1g, then we can get

ð1; 1Þ 0 B1 ð1; 4Þ ð1; 5Þ XCT
cl X

� �T2 0 T2AT
d T2AT

d 0 0

� � �cI BT
1 BT

1 0 0

� � � �X 0 0 0

� � � � �d�1T1 0 0

� � � � � �I 0

� � � � � � �T2

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

< 0

ð28Þ
T3 AdT1

� T1

� �

P 0 ð29Þ
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where ð1; 1Þ ¼ SymfðAcl þ Ad � IÞXg þ dT3; ð1; 4Þ ¼ ð1; 5Þ ¼
XAT

cl � X . Substituting (3) to (28) and letting Y ¼ KX , we
can get (18). This completes the proof. h

3.3. H 2=D-stability controller design

Theorem 3. Consider the discrete time-delay system (2). If

the following optimization problem

minfaþ trðQ1Þ þ trðQ2Þ þ cg ð30Þ
subject to

(i) (15), (18) and (19)

(ii)
�a /Tð0Þ
� �X

� �

< 0

(iii)
�Q1 NT

� �T2

� �

< 0

(iv)
�Q2 MT

� �T1

� �

< 0

has a solution with a positive scalar a, symmetric and

positive matrices X ;T1;T2;Q1;Q2 and matrices Y ;T3, then

system (2) is stable and the corresponding H2 cost satisfies

JH2
6 J�H2

< J� ¼ aþ trðQ1Þ þ trðQ2Þ þ c ð31Þ

And uðtÞ ¼ YX�1 is an H 2/D-stable controller of the system

(2). Here, tr ð�Þ denotes the trace of the matrix ð�Þ and
Pd

i¼1/ð�iÞ/Tð�iÞ¼NNT;
P0

s¼�dþ1

P�1
l¼s�1eðlÞeTðlÞ¼MMT.

Proof. Let X ¼ P�1;S2 ¼ T�1
2 ;S1 ¼ T�1

1 . (ii) is equivalent
to / Tð0ÞP/ð0Þ < a. (iii) and (iv) are, respectively, equiva-
lent to the following equations

�Q1 þNTS2N < 0;�Q2 þMTS1M < 0 ð32Þ
From (20), we can get

X

d

i¼1

/Tð�iÞS2/ð�iÞ ¼
X

d

i¼1

trð/Tð�iÞS2/ð�iÞÞ ¼ trðNNTS2Þ

¼ trðNTS2NÞ < trðQ1Þ ð33Þ
X

0

s¼�dþ1

X

�1

l¼s�1

eTðlÞS1eðlÞ ¼
X

0

s¼�dþ1

X

�1

l¼s�1

trðeTðlÞS1eðlÞÞ

¼ trðMMTS1Þ
¼ trðMTS1MÞ < trðQ2Þ ð34Þ

Then we can get

J�H2
< aþ trðQ1Þ þ trðQ2Þ þ c ¼ J� ð35Þ

This completes the proof. h

Remark 2. The generalized characteristic problem (15) and
the optimization problem (30) cannot be solved by the LMI
toolbox simultaneously. Therefore, the problem (15) can be
firstly solved to find the maximum value of the time delay
d. Then the problem (30) can be solved by the LMI toolbox
after the time-delay d is made certain.

4. Illustrative example

Consider the following discrete time-delay system

xðk þ 1Þ ¼ AxðkÞ þ Adxðk � dÞ þ BuðkÞ þ B1wðkÞ
zðkÞ ¼ CxðkÞ þDuðkÞ

ð36Þ

where

A ¼
0 1

0 1:2

� �

;Ad ¼
�0:25 0:1

0 0:1

� �

;B ¼
0

10

� �

B1 ¼ 0:1 0:1½ �T;C ¼ 0:3 0:3½ �;D ¼ 4

/ðkÞ ¼ e�k 0
� �T

Let uðkÞ ¼ 0. It is expected to design a state-feedback D-
stability controller locating all the closed-loop poles inside
Dða; rÞ. Based on Corollary 3, we can find the maximum
time delay �d and its corresponding state-feedback gain K
of system (36) with different a and r. We obtain �d ¼ 3,
K ¼ ½�0:0292 �0:1948 � when a ¼ �0:2; r ¼ 0:8; �d ¼ 2,
K ¼ ½ 0:0058 �0:0720 � when a ¼ 0:1; r ¼ 0:6; �d ¼ 1,
K ¼ ½ 0 �0:1132 � when a ¼ 0; r ¼ 0:5.

We can see that the value of the maximum time-delay �d
is smaller when the range of the specified region is smaller.
And the state-feedback gain K ¼ ½�0:0292 �0:1948 �
locates all the closed-loop poles of the corresponding sys-
tem without delay inside Dð0; 1Þ. Therefore, time-delay
increases the conservativeness of the system.

Then let uðkÞ ¼ KxðtÞ. We design a state-feedback H 2/
D-stability controller that not only guarantees all the
closed-loop poles to be placed inside a specified region
Dða; rÞ (a ¼ 0:2; r ¼ 0:6), but also provides an H 2 perfor-
mance upper bound. Given d ¼ 1, from Theorem 3, we
obtain the H 2 cost bound J� ¼ 1:5152 of disturbance atten-
uation level and its corresponding state-feedback gain
K ¼ ½ 0:0031 �0:0680 �.

5. Conclusions

The H 2 control problem has been considered for a class
of discrete time-delay systems with D-stability constraints.
The obtained D-stability criterion and H 2 performance
specification are delay-dependent and given in terms of
LMIs. Based on the above conditions, a mixed H 2/D-sta-
bility controller is designed that not only guarantees all
the closed-loop poles are placed inside a specified region,
but also provides an H 2 performance upper bound. Further
results on H 2/D-stability control for uncertain discrete time
systems with time-delay will be presented elsewhere.
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